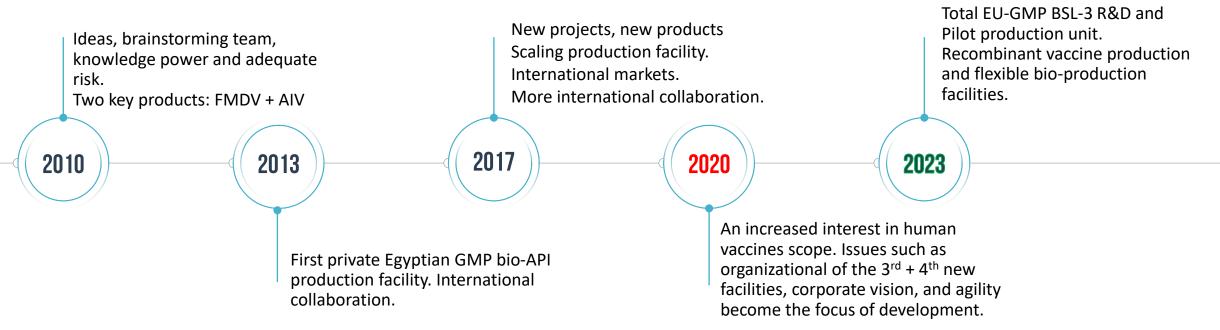


TECHNOLOGICAL PROCESSES USED FOR VACCINE MANUFACTURING IN MEVAC

Leonid DUDNIKOV


CONTENTS MEVAC CC BIO-API PRODUCTION

1. MEVAC's BIOTECH PHILOSOPHY 2. MEVAC IMMUNOTECHNOLOGY 3. MEVAC + UVAC 3.1. BIOPHARMA MULTI-PRODUCT FACILITIES 3.1.1. LARGE SCALE CELL CULTURE (LSCC) 3.1.2. EGG BASED VACCINE PRODUCTION 4. FMDV PRODUCTION TECHNOLOGY CASE 5. CONCLUSION SMART COLLABORATION

MEVAC's BIOTECH PHILOSOPHY

MEVAC: HISTORY

Evolution of development and manufacturing

RESPECT FOR PEOPLE

Respect

Respect and understand country needs

Take responsibility

Build mutual trust

Knowledge kettle

Teamwork

Stimulate personal and professional growth

Create opportunities for development

Optimize team, working area and individual performance

Challenge Ka

Create long-

term vision to

meet challenges

Foster creativity

to realize the

vision

Kaizen/Lean

CONTINUOUS IMPROVEMENT

Continuously improve development/ manufacturing/ business processes

Genchi Genbutsu

Make the right decisions by going to the source of the facts

Evolve and innovate

BUSINESS STRATEGY

Business Model 2022 (manufacturing link)

MISSION

Ensure safety, potency and efficacy of vaccines using international technology standards. To defend the community against the threats of emerging infectious diseases by customizing products for acute specific diseases

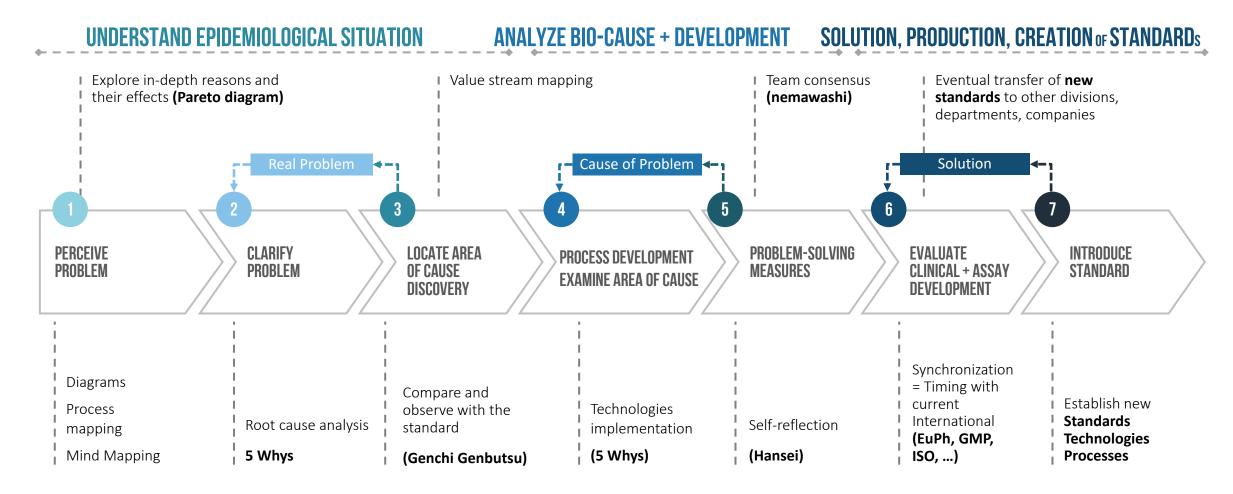
VISION

Providing High Quality Effective Solutions for Better Health with International Quality Standards. Education and training to ensure our employees are both satisfied and performing at the highest level

STRATEGIC OBJECTIVES

Our company strives to fully utilize all development + production capacities and strengthen our business activities in MEVAC's traditional markets and Europe

LONG-TERM OBJECTIVES

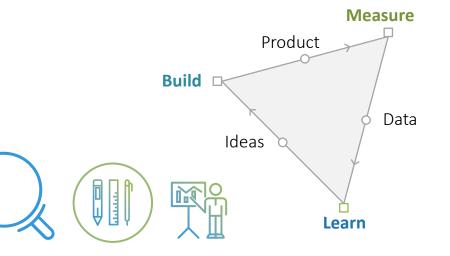

Our company expects to double revenue in the next three years

Start human vaccines development and production

	•													
	ASSET BASE													
	Maintenance	4 maintenance facilities												
Ţ	B#1 BSL-3	R&D + QC + Cell Bank	COVID-19 Pilot											
<u>الم</u>	500lt Pilot → 5000lt UVAC	50M doses FMDV 2023	Human vaccines > 3 types											
ß	B#3 + B#4 Poultry rVaccines	Scaling production	Development											
$\overrightarrow{\mathbf{x}}$	Highly Qualified Product	International st	andard identity											
HUN	Highly Qualified Staff	~100 new employees	International Reputation											

VACCINE DEVELOPMENT/PRODUCTION/QC IN MEVAC

The Toyota Way: Practical Problem-Solving Process in Bio-Tech



MEVAC'S BIO-STARTUP METHODS

BUILD-MEASURE-LEARN-FEEDBACK LOOP

BUILD

Import substitution in biosafety area
From Lab to Facility (B#1, B#2, B#3 ...B#n)
International reputation
From Minimum viable product (MVP) →
→ Exceptional viable product (EVP)
Small → Pilot → Industrial scale batches

MEASURE

Bio-API production Interlaboratory comparison (ILC) tests Cohort analysis Innovation accounting Continuous Development + Deployment

AARRR (Acquisition Activation Retention Referral Revenue)

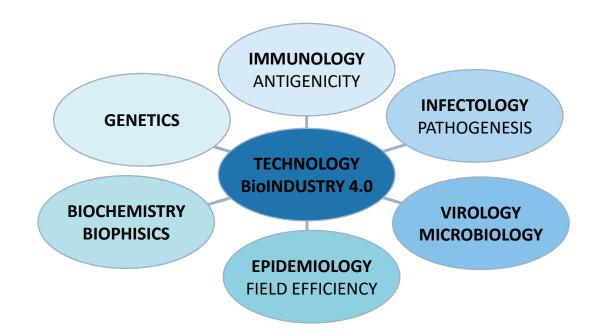
LEARN

Collaboration Analogs and antilogs Customer archetype Engines of growth Five Whys TRIZ in Bio "Get out of the Building"

Pivot – Knowledge + People

Pull (hypothesis)

Validated learning


Waste / Value

 $\mathsf{Ideas} \to \mathsf{Build} \to \mathsf{Product} \to \mathsf{Measure} \to \mathsf{Data} \to \mathsf{Learn}$

MEVAC IMMUNOTECHNOLOGY Brief overview of vaccines manufacturing

TYPES OF LICENSED VACCINES

- Inactivated toxins
- Inactivated whole fungal, bacteria or viruses
- Live attenuated fungal, bacteria or viruses
- Subunit vaccines
- Genetically engineered constructions:
 - Vector \rightarrow Proteins
 - pDNA / mRNA
- Polysaccharide vaccines
- Conjugate vaccines
- VLPs-based vaccines (virus-like particle)

- There is no generic technology for making vaccines
 - All vaccines are unique/different
 - Even the same vaccine produced by a different manufacturer can be different

SCENARIO

Basics MEVAC's trends

EGGS BASED MODEL

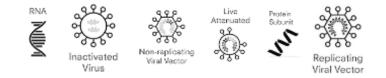
Scientific collaboration

Flexibility

Working experience and solutions

Maximum business value Comprehensive evaluation and documentation

CELL CULTURE BASED

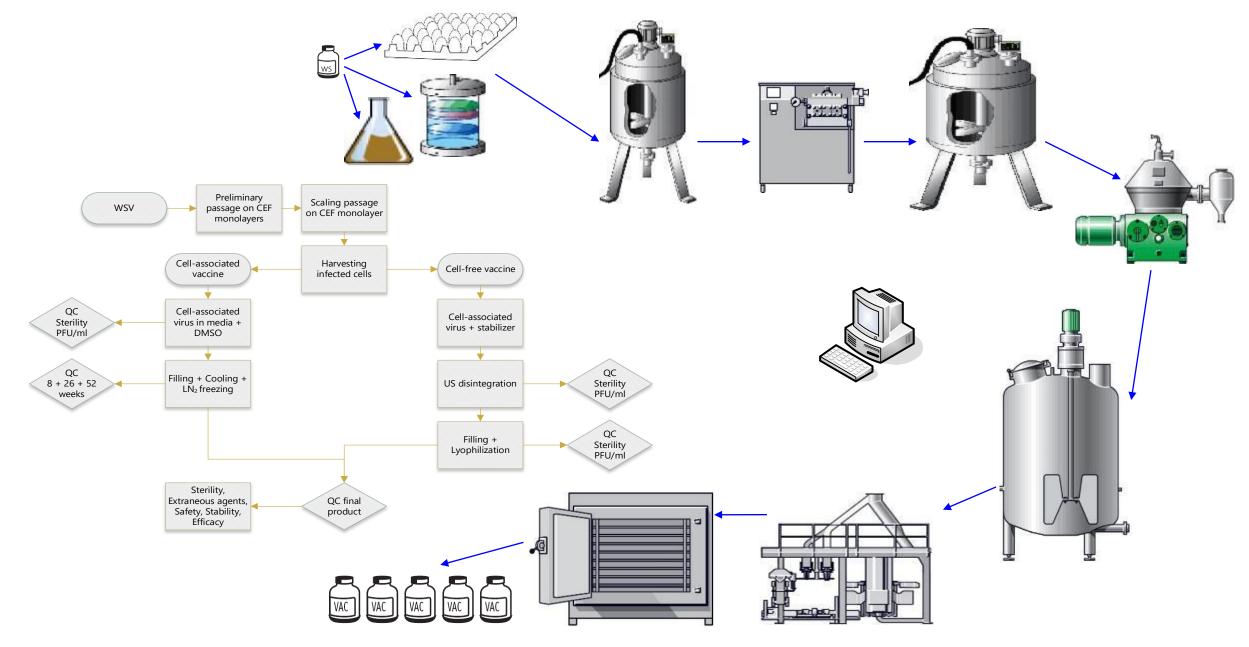

Contact negotiation

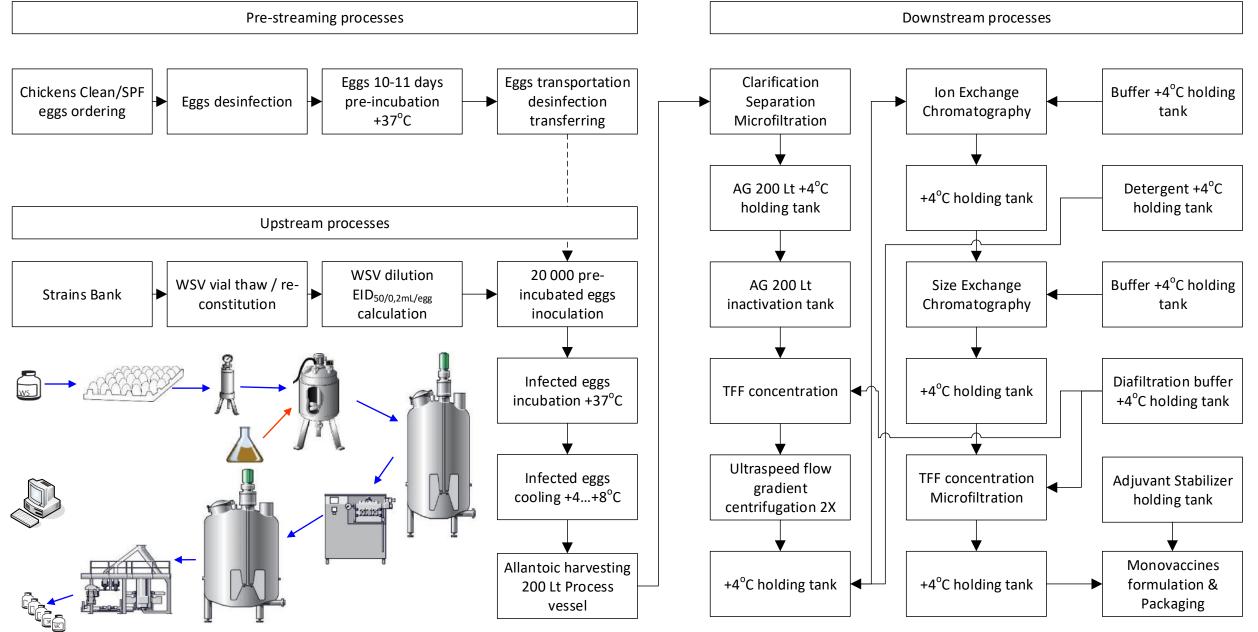
Working experience

Development

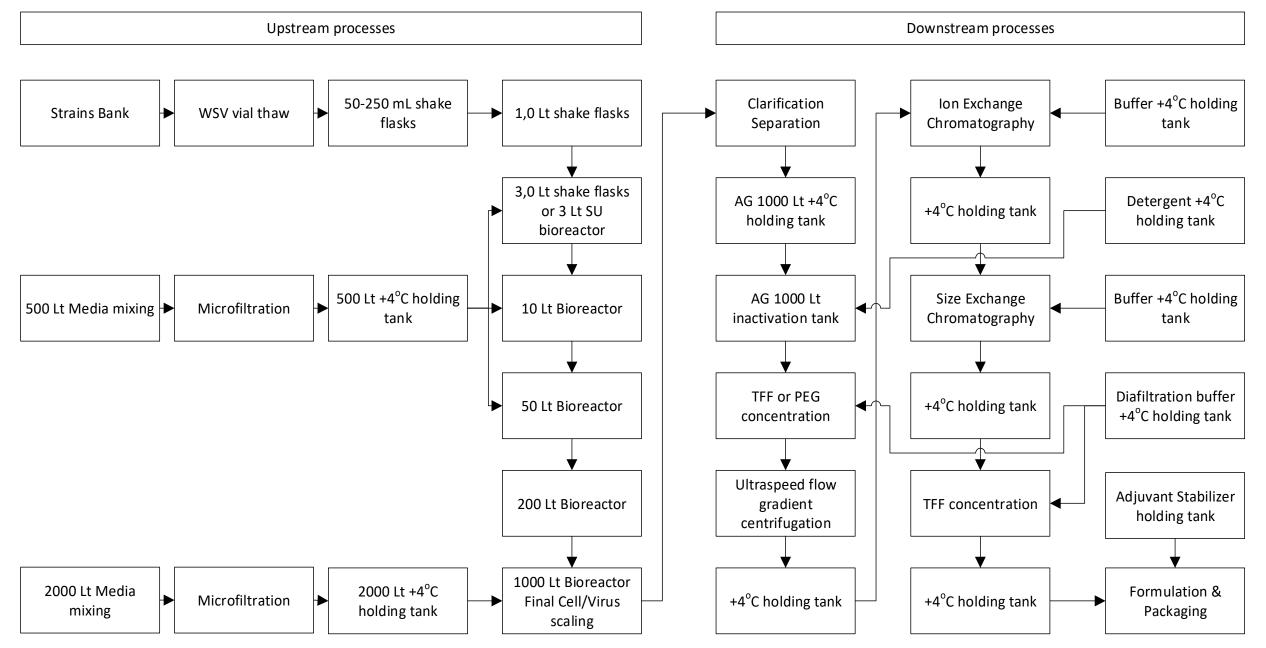
Rigid scaling and planning

Comprehensive evaluation, documentation



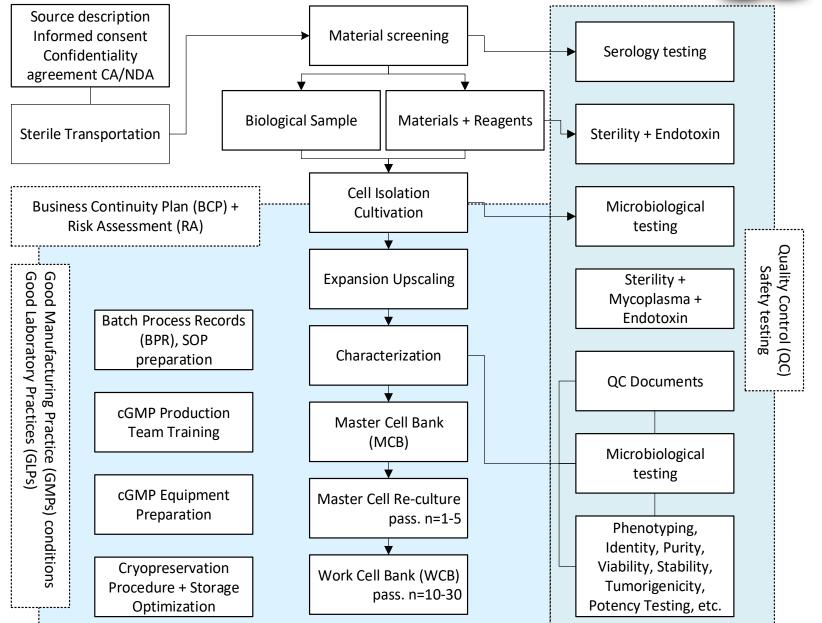

THE Bio-AGILE METHOD

The agile approach to scientific project management encourages an environment characterized by development, delivery, collaboration, self-organization, and rapid results. It allows specialists from different academicals and science schools involvement in intellectual collaboration, project planning, and development from the very beginning


LIVE VACCINE PRODUCTION

INACTIVATED EGG BASED VACCINE PRODUCTION (INFLUENZA)

CELL CULTURE BASED VACCINE PRODUCTION



CELLS BANKING under cGMP

Schematic of the cell expansion process

Cell-specific productivity $(q_P) = CQAs$:

- Process parameters during cell expansion:
 - cell densities, viabilities, metabolites, pH, pCO₂, pO₂, T⁰, etc.
- Index proliferation:
 - cell age (defined as the number of doublings before flask/roller/bioreactor inoculation) reflecting growth duration
- Growth rate (the average specific growth rate of cells derived from the cell-expansion process) reflecting the state of the cells
- Cell-specific perfusion rate (CSPR) + productivity (example):
 - virus titer (CCID_{50/mL})
 - 146S^{FMDV} component yield (ug/mL)

Scale-X hydro bioreactor UNIVERCELL, Belgium

GLOBAL PROCESS CONCEPT (GPC) France

TFF concentration

- MM Cogent-M1 (Germany) 0.1 sq.m. from 300-1000 kDa

- Cobbette (Italy-China)

300-1000 kDa 1.0 sq.m. from 2020 300 kDa

ADJUVANT=IMMUNIZERS DEVELOPMENT IN VACCINES MILESTONES

LPS, DNA, LPP Aluminum salts: Potassium Sulfate Phosphate Hvdroxide Ca₃(PO₄) Freund's CFA/IFA w/o Natural derivatives **Oils**, Surfactants Saponin/Gypsophilin Quil-A Oil Allohrasid Alum Triterpenoid glycosides As a substance that when added to the antigen would improve the immune response

Synthetic derivatives/oils (silicon) ISCOM's Liposomes QS-21 MF59 MPL Al₂O₃ / V₂O₅ / ZnO₂ / TiO₂ / SiO₂ Multiple/Double Emulsions Virosome IFA W/O O/W W/O/W O/W/OGe Ce Au Ag CF and IL-15

Single Adjuvants

Need to induce proper immune response against difficult low immunogenic pathogens Amorphous hydroxylphosphate sulfate Chitosan + Cyclodextrins + β-glucan ISCOMATRIX Flagellin R837/848 Surface Arrayed Therapeutics SATx™ TLR9 ligand (oligonucleotide) Toll-like receptor 9 agonists CpG ODN M-CSF = MGI-IM = CSF-1 EGVac system Glycoside Cholesterol Complex (GCC) rIF

Adjuvant Systems

Insufficient response produced by challenging vaccines; to stimulate the production of a long lasting response

Detoxified mutants dmLT TLR5 ligand protein (Flagellin) linked to Ag VAX2012Q, VAX125 TLR4 ligand protein +MPL + Al(OH) RS529 GLA-SE Squalene + Pluronic®L121 Co-Adjuvants: polyU/C CAF01, SSI dsRNA polymer analogue + TLR3 ligand Poly I:C = PIC, PICLC, PIC12U, PICKCa[®] (Rintatolimod=Ampligen[®]) Inulin=Advax[™] (β-d-[2 \rightarrow 1] poly(fructo-furanosyl) α -d-glucose)

Molecular Adjuvants for mRNA / DNA Vaccines

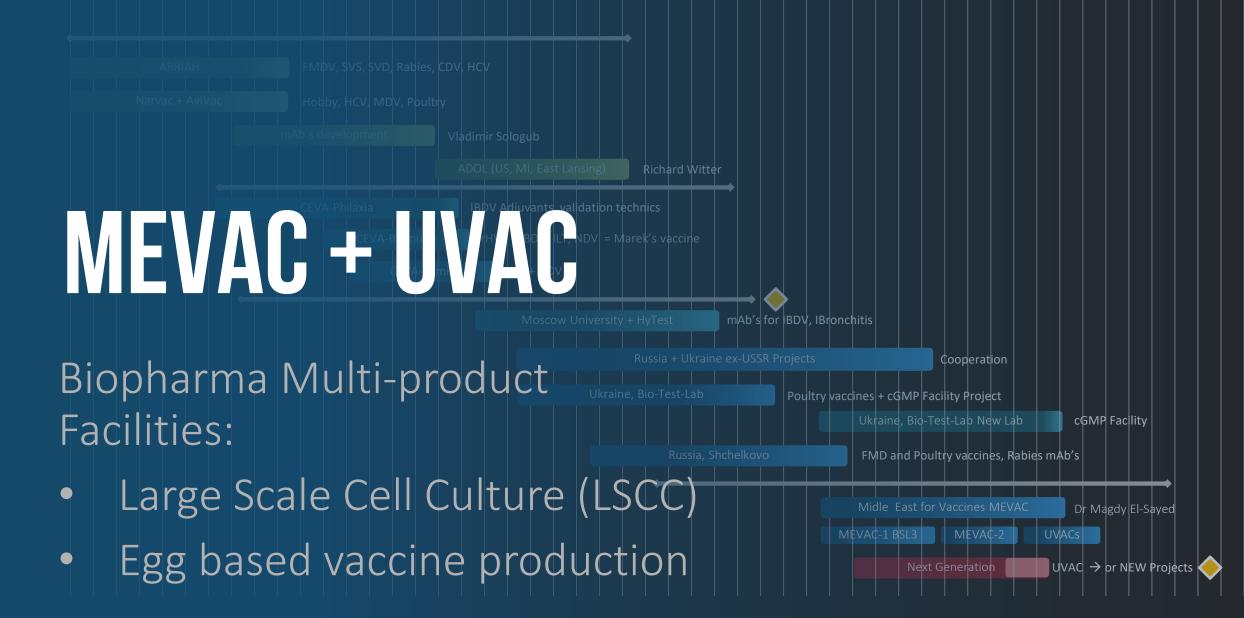
Safe immune Ag target stimulants prolong lifetime immunogenicity. Class's org. personalized immunotherapy Nano / Microparticles / Emulsion / Colloids Novavax Matrix™ Poly(DL-lactide-co-glycolide) Polystyrene (latex) Chitosan nanoparticles (IBV-CS) Lipid / Aqueous Two-Phase Systems, Smart Polvmers Cationic peptide complexed/liposome VCL-HB01 (Vaxfectin) Immuno-active patches Dendrimers Quantum dots (QDs) Magnetite (Fe_3O_4) Nanostructures ⁴ Graphene - nano-tubes nano-cells/spheres/balls
nano-foam/net/grid

NanoBot = NanoRobots

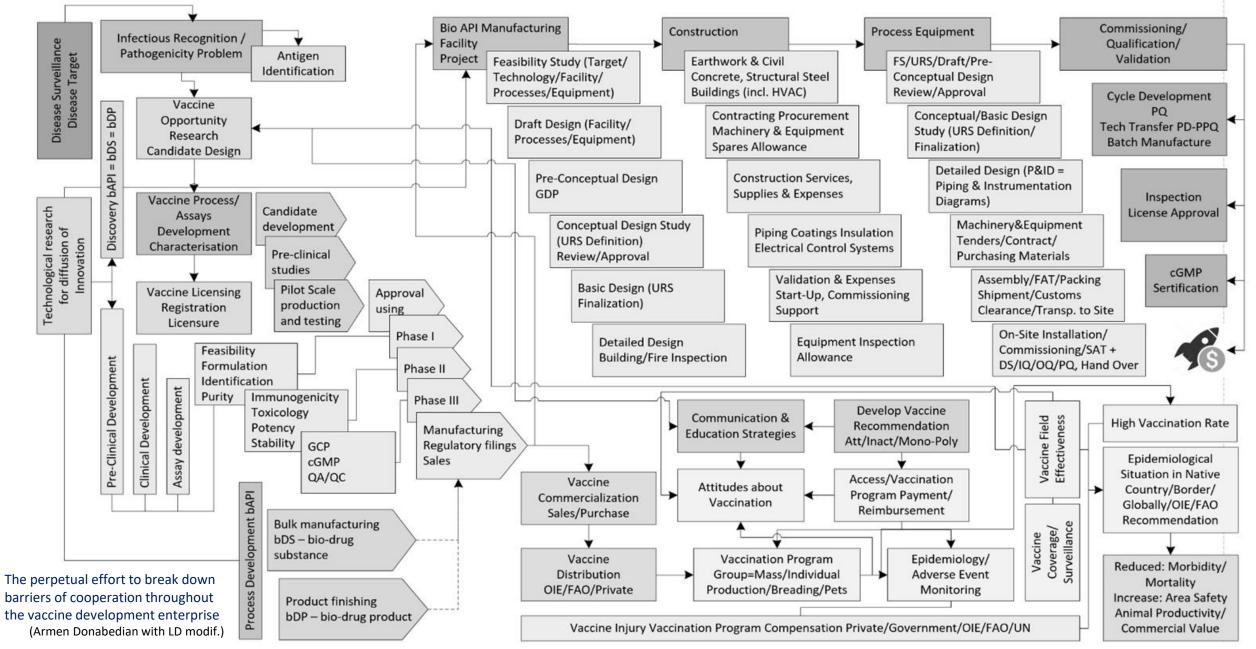
pre-Classical Industrial Biotechnology

Classical Industrial Biotechnology

Recombinant DNA Biotechnology


Post Genomic Biotechnology

1930's

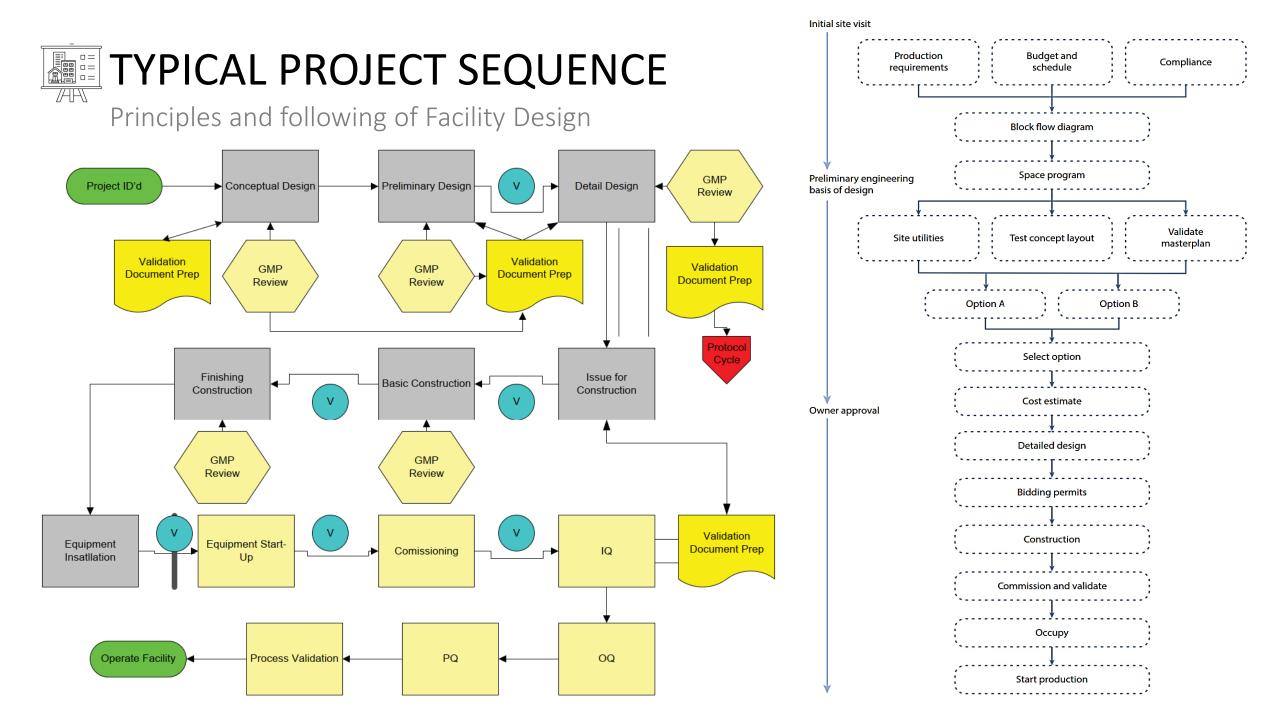

1990's

2000's

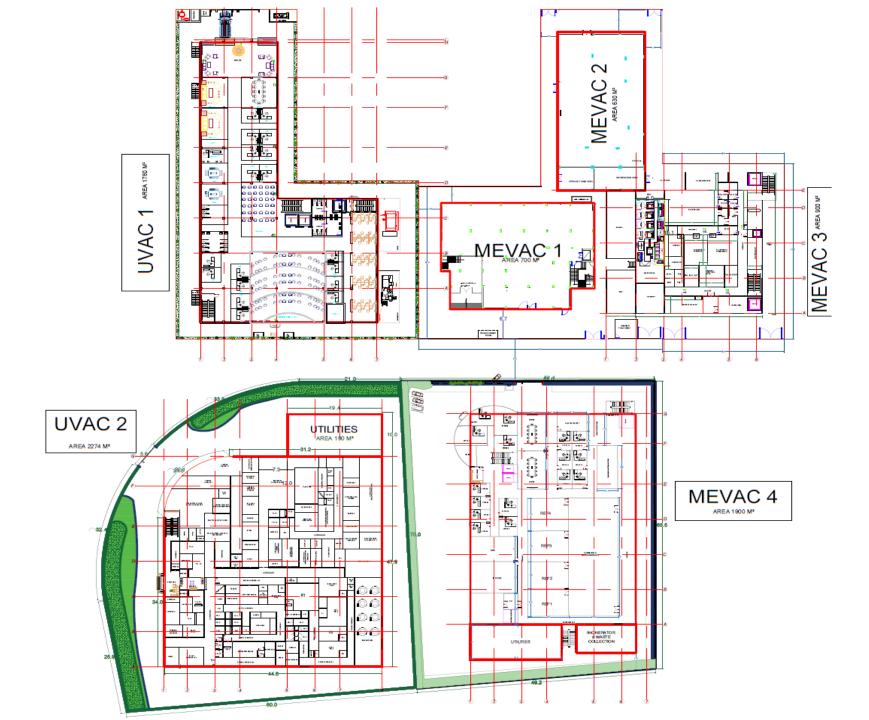
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

VACCINE R&D + PRODUCTION + DISTRIBUTION MODEL

INDICATORS FOR SIMULATION MOD


UVAC-2 Innovation Case Study Next-gen + Factory of the Future + Smart Bioprocessing

	program Orders / pr					
	-	type				
	-	amount				
	-	time period				
Factory in a Box		from parts lists				
	-	assemblies				
	-	parts				
Continuous Industry 4.0	-	stock				
Intensified		Loading strategy				
Biomanufacturing	-	sequence				
	-	order of arrivals				


Product information	System elements	Material flow information's								
from the production	from the workshop layout	from the work schedule								
rogram Orders / products	 workplaces 	 technological order 								
- type	 storage systems 	 economic batch size 								
- amount	- buffers	- setup time								
- time period	- conveyor system	- time / unit								
	- funding aid	- assembly time								
from parts lists		- used machines								
- assemblies	e.g. with the following	- multi-machine								
- parts	information:	operation								
- stock	- type									
	- number									
Loading strategy	- topology									
- sequence	- capacity									

\checkmark	Factory in a Box 🛛 🗸 🗸	Continuous Manufacturing	BioPharm 4.0	Intensified Production
	Future proofing	Connected and closed	PAT, MAM	Train simplification
	Modular / Podular (Isolators)	Contiguous, not closed	APM, OPM	Footprint productivity
	Single-use system (SU)	In-line fluids conditioning	Adaptive plant	Temporal productivity
	Hybrid-SU systems	Straight-through processing	Cloud, AI, IoT	Economic productivity
	Standardized vs Free	Perfusion-based continuous	Improved monitoring	Volumetric productivity
	Integrated, enterprise	Pseudo- and quasi-continuous	ERP→MES+EBR→LIMS	Cell/WSV-specific productivity
	Shared services plant	Intensified perfusion continuous	Model predictive control	Improved clonal expression
	Platform agnostic suites	Integrated continuous processes	Real-time product release	Improved process and/or medium
	Entity and mode flexible	Repeated fed (or intensified) batch	Automation, autonomation	Many bioprocess simplifications
	Shortened process train	Continuous but unjoined operations	Integrated, real-time analytics	Perfusion intensified seed (n ⁻¹)
	Prefabricated cGMP facilities	Enterprise continuous production	Continued process verification	Implementation of columns to left

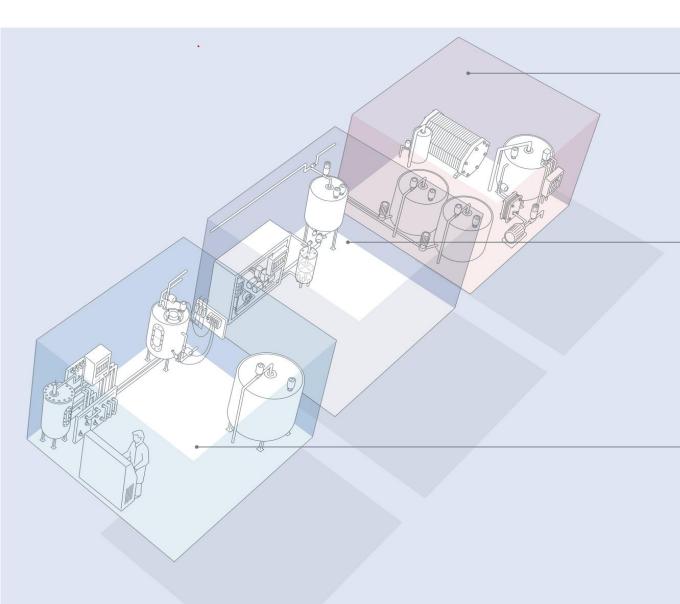
Whitford and Nelson, BioProcess International 17(6) June 2019

VACCINE PRODUCTION PROCESSING

Bio-Pharmaceutical Engineering Experience

Minimum Plant Footprint

Higher Process Yield


Maximum Cleanability

MEVAC's >10 years of successful experience in own Bio-Facilities design and Bio-Project realization and managed implementation of an idea will lead to innovation and a benefit of the biotechnology in Egypt

Optimum Process Flexibility

IN-PROCESS PROFESSIONAL SUPPORT

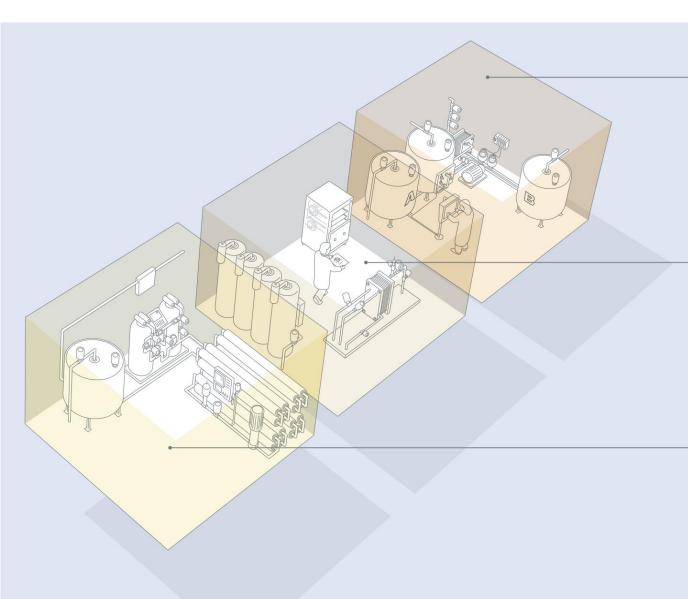
Up/Down Streams Processing

Separation, Filtration, TFF Concentration, Inactivation

Downstream processes of identifiable and specific Bio-API require our unlimited know-how and modularity to save you valuable plant space and offer you peace of mind from aimless spending and cross-contamination.

Purification/Chromatography

Obtain as much immunogenic antigen yield as possible in the right place with the least amount of waste. This is the area where the combined vaccinology competence and process/application understanding is fully utilized to deliver fast flow shifts, minimum dead space, and reduced footprint.


MEVAC's know-how solution, extending the principle that the highest possible return on investment is generated from this area of the Bioplant.

Cells/Virus Cultivation/Propagation

Significant time and money are already invested in preparing the ingredients for the cell/virus cultivation process. On reactors, cell-factories, growth quality materials, and engineering. The result is a completely reliable environment control for the antigens creation; we combine that with exceptional components for parameter control, and solutions, which are used to join up separate reactors within coordinated processing lines.

IN-PROCESSES OF THE BACKGROUND

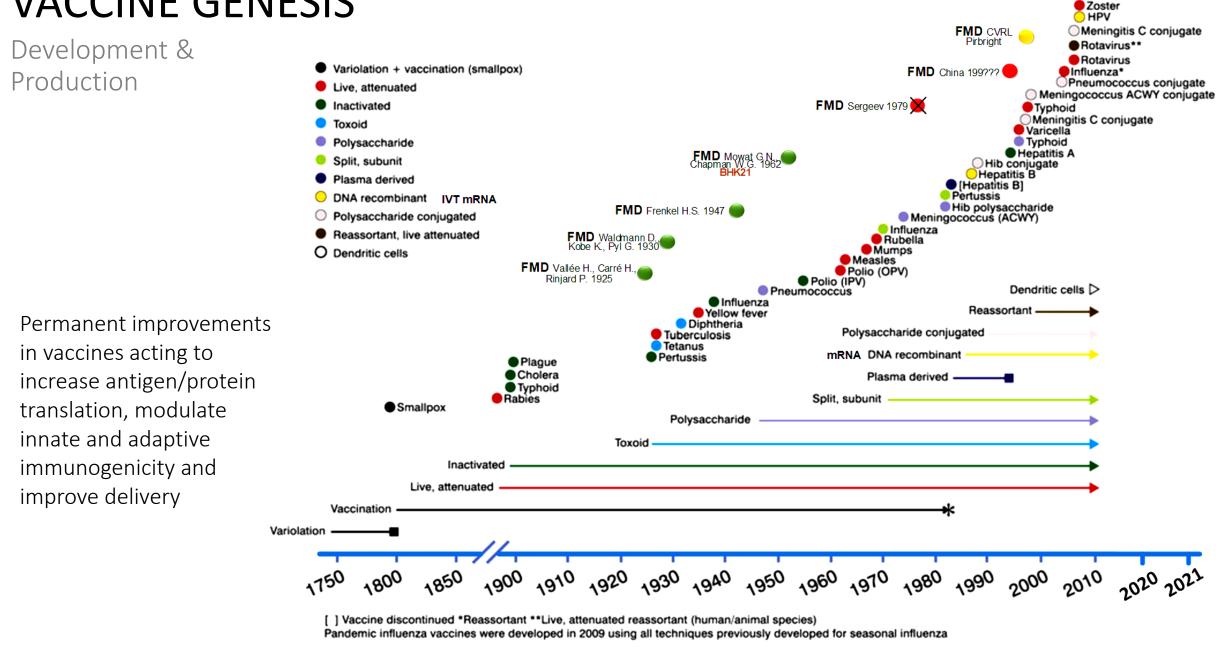
Bio-Pharmaceutical manufacturing relies on Utilities, Liquids, Gasses, Waste treatment

CIP/SIP = Clean-in-Place / Sterilize-in-Place

Customers trust your product and safety is related to MEVAC's brand. Each stage of your CIP/SIP regime can be controlled and safely documented according to EU-cGMP requirements and we know how to do it. All of the CIP/SIP parameters are safe in MEVAC's hands allowing us to make our vaccines with confidence.

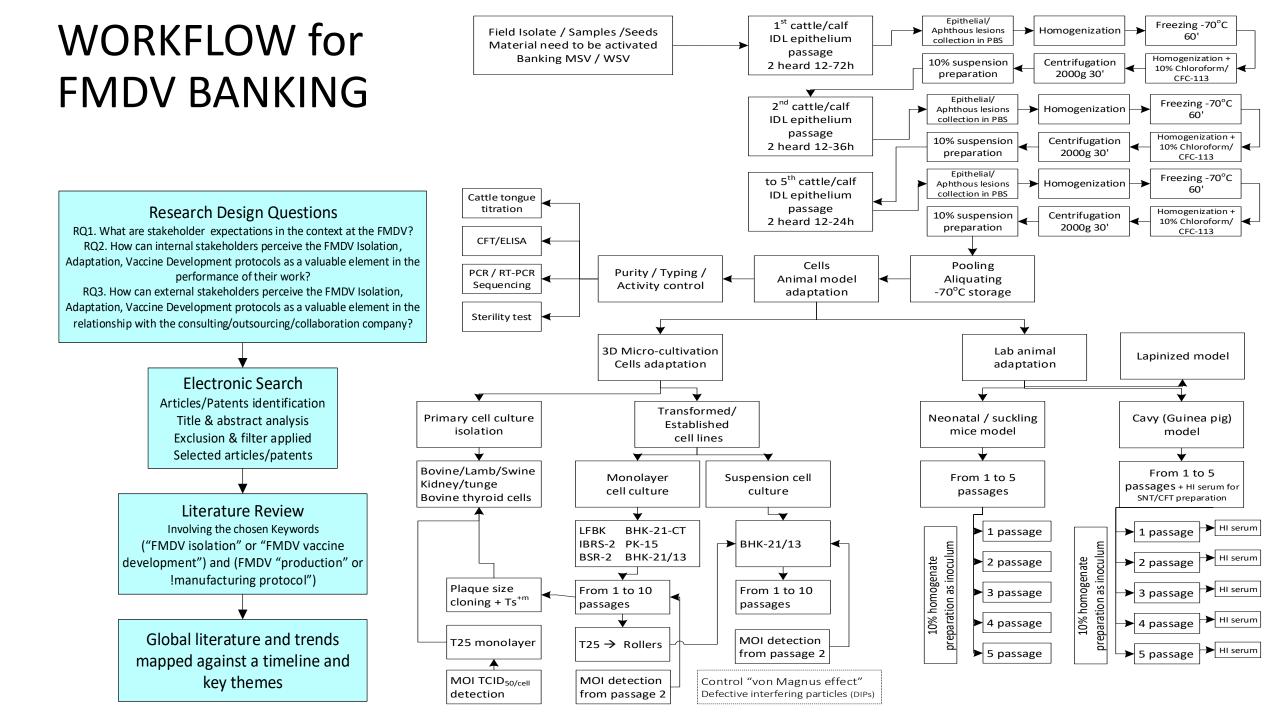
Utility and Clean Steam / BSL-3 waste treatment

MEVAC cares about biohazardous agents and post-processing treatment. We using cutting edge solutions for that.


Water Quality, WFI preparation and Availability

In the biopharma sector water as the most important ingredient. Water quality is therefore often essential to the success of the product. It affects the quality, sterility of an injectable saline solution, buffers, cell/virus growth media preparation traceability and certification of water quality is standard procedure. We are involved, we have concept technology, reliable equipment manufacturers in the complete water supply chain from groundwater treatment and incoming water supply, processing to your most stringent requirements, inline verification and final decontamination, treatment and/or neutralization.

FMDV PRODUCTION TECHNOLOGY CASE


Idea \rightarrow R&D \rightarrow Pilot \rightarrow Manufacturing

VACCINE GENESIS

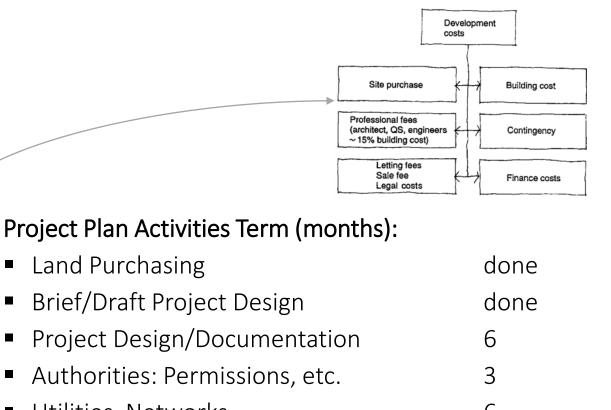
OProstate cancer

Practice discontinued Disease eradicated

General Figures

Total land area around 4000 sqm

Production areas

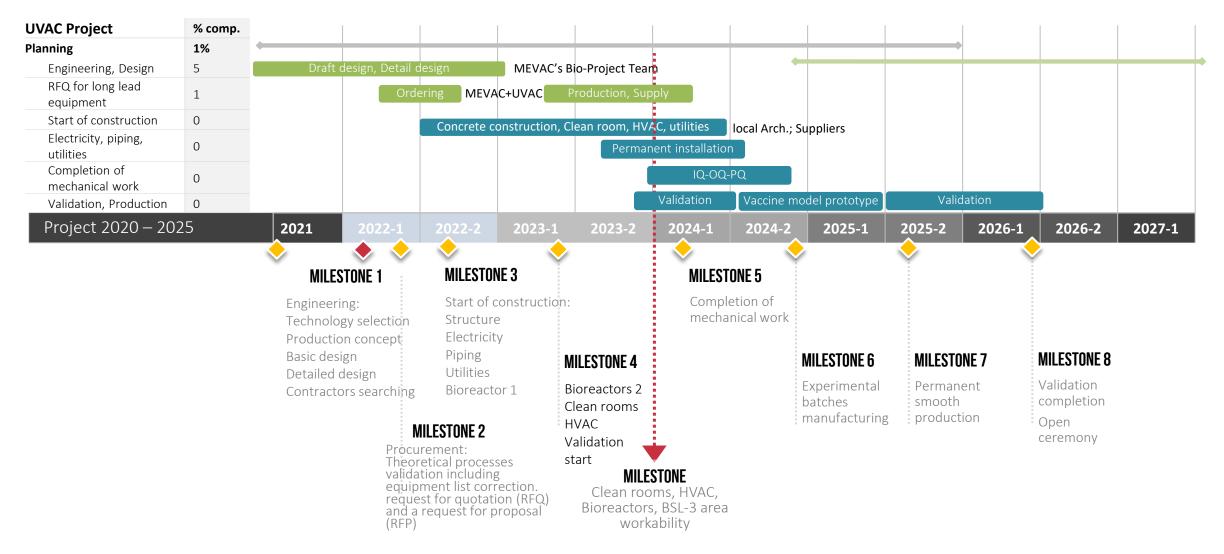

- Production (adherent/suspension):
 - Inactivated (FMDV, RVF)
 - − BSL-3 → UPS/DSP
 - DSP \rightarrow Blending + filling

55%

Writing down Ideas

Thinking New Ideas

- Live cell culture vaccines = Attenuated (freeze-dried)
 - UPS/DSP
 - DSP → Blending + filling + lyophilization
- QA + QC + R&D laboratories
- Technical + Engineering
- Utilities + Waste treatment (BSL-3)
- Administration and auxiliary


6

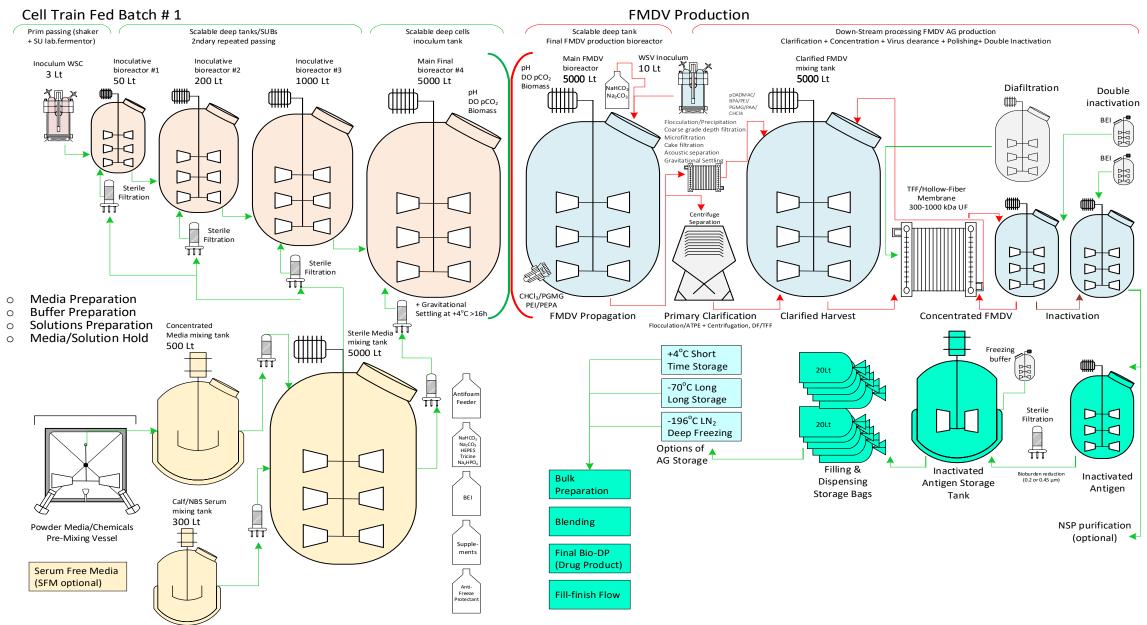
6

- Utilities, Networks 6
 Tenders, Buildings, Constructions 24
 Equipment: URS→DQ/IQ/OQ→PQ 12
 Installation + Validation 6
- Launch of production (3 batches)
- GMP-certification

PROJECT PLAN GANTT & TIMELINE

2022 – 2026 half-years timeline with a facility and product profile

TIME LINE & EXECUTION PLANNING


2023

Bioreactors from Tendering to Validation

cecution planning project management			Duration	In charge																					
applying for permits tendering relocation planning ecution supervision staff training acceptance test		UVAC-2 Milestones 1 Establishment of UVAC-2 2 Contract award and signing 3 Start of 4 Delivery of bioreactors 5 Mechanical completion 6 Final completion 7 Major validation activity completion for UVAC-2			1	2	3						1	4				5				6			7
commissioning and billing chalogical Change r Socio-technical innovation)	1 Brief issued	Engineering phase 8 Kick-off meeting 9 PID diagrams 10 Vessel drawings 11 Technical specifications 12 3D modeling 13 Electrical drawings 14 Functional design specifications 15 Design review	5 months 2 days 40 days 25 days 40 days 80 days 50 days 65 days 25 days	Manufacturer		- 8	10	-9	- 13	12															
	2 Design situation explored	Procurement phase 16 Bioreactors 17 Bulk material	5 months 110 days 60 days	Manufacturer				_	-0-	- 15	- 16 7														
System Designing	3 Problem structure perceived or transformed	Manufacturing phase 18 Spool manufacturing 19 Vessel and skid positioning 20 Skid assembly 21 Instrumentation and automation hook-up 22 PreFAT and commissioning 23 FAT 24 Packing 25 Delivery to UVAC-2	7 months 35 days 15 days 45 days 30 days 20 days 20 days 15 days 30 days	Manufacturer					-0	-0- 11 -0- 19 	8	20	21	23 • 24	• 25										
Craft Evolution	4 Boundries located, sub-solutions described and conflicts identified	Site construction phase 26 Piling 27 Steel structure 28 Shell/interior 29 Hygenic piping 30 Black piping	14 months 65 days 150 days 260 days 150 days 260 days	UVAC-2			-	-	26	•	-	27	0	•				28 29 30							
	5 Sub-solutions combined into alternative designs	31 HVAC Site installation phase for bioreactors 32 Installation of 5,000 I production bioreactor 33 Bringing in, positioning/leveling seed bioreactors 34 Reassembling and piping on site	10 days 20 days	Manufacturer UVAC-2 Manufacturer							00 3	2			000	00 33		- 31 - 34							
	6 Alternative designs evaluated and final design selected	Validation phase for bioreactors 35 Commissioning of bioreactors 36 SAT bioreactors	13 months 25 days 80 days	Manufacturer UVAC-2													-	• 35	 0-0-0-	- 36					
		37 Qualification (IOV) of bioreactors 38 Sterility test of bioreactors 39 Enhanced qualification (PV) of bioreactors	70 days 60 days 125 days	UVAC-2															-	-	-	37	-	- 38	20

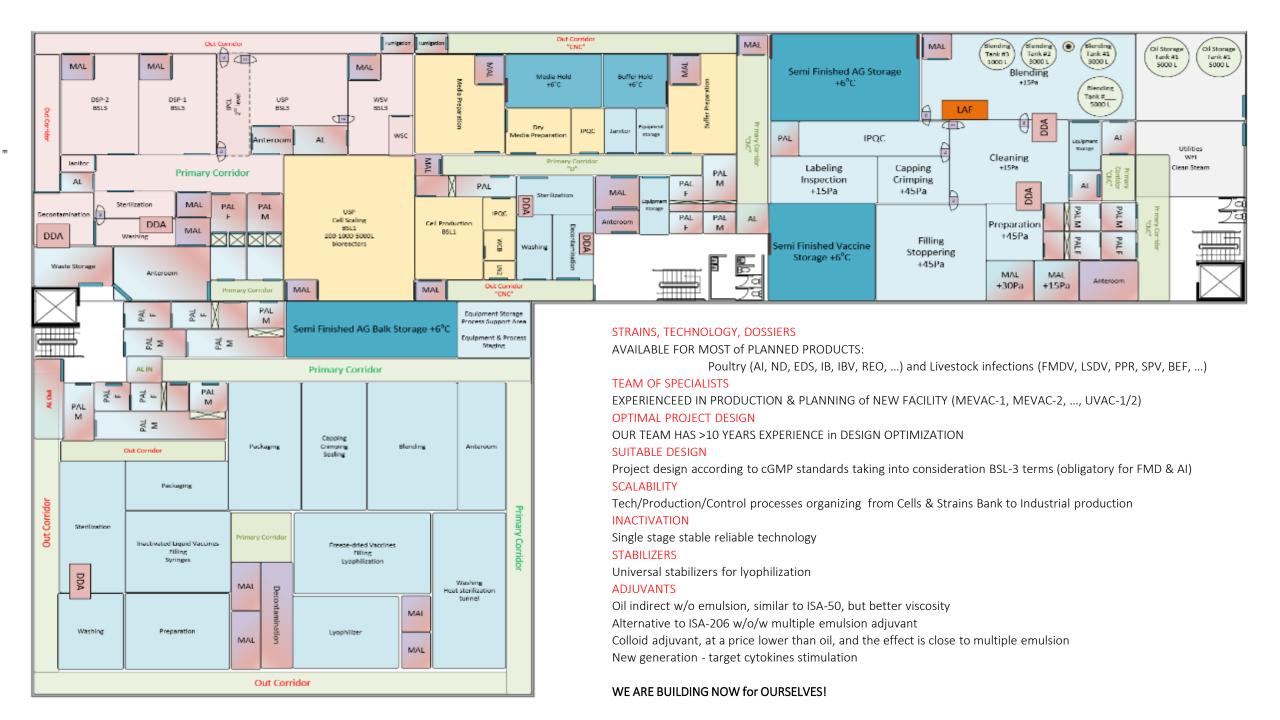
2022

5000 LT BIOREACTORS INDUSTRIAL PRODUCTION LINE

Need data from:

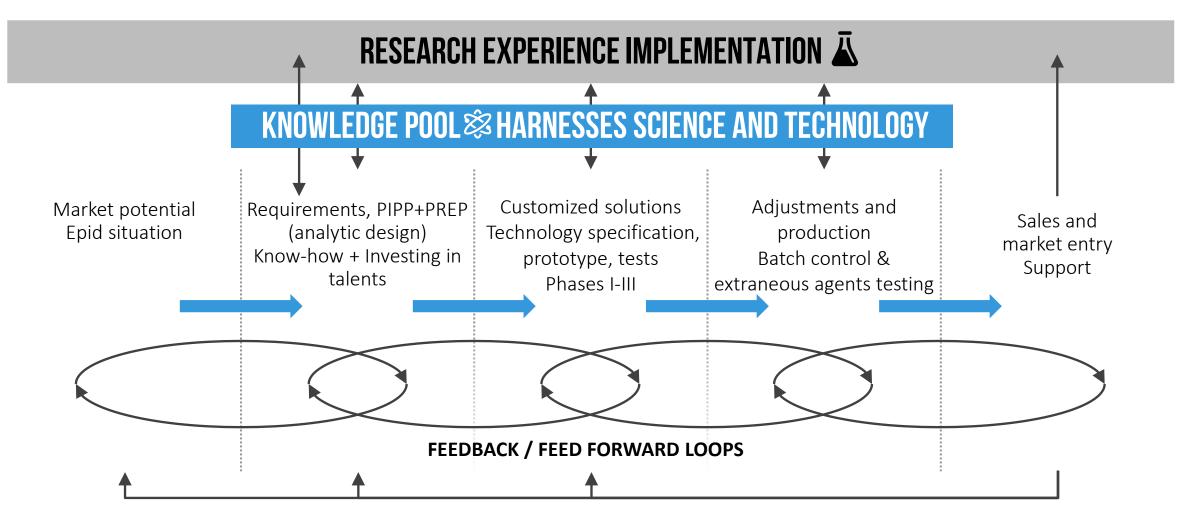
BUDGETING/FIXED CAPITAL COSTS (FACILITY MATRIX)

Cost calculations related to the capital expenses (CAPEX)


Total Plant Direct Cost (TPDC) (physical cost)	%	%
1. Equipment Purchase Cost		7.80
2. Installation		4.21
3. Process Piping		2.73
4. Instrumentation		3.12
5. Insulation		0.23
6. Electrical		0.78
7. Buildings + Celan rooms + HVAC		31.19
8. Yard Improvement		1.17
9. Auxiliary Facilities + Utilities		3.12
TPDC	54.35	
Total Plant Indirect Cost (TPIC)		
10. Engineering		13.59
11. Construction		19.02
TPIC	32.61	
Total Plant Cost (TPC = TPDC+TPIC)		
TPC	86.96	
Contractor's Fee & Contingency (CFC)		
12. Contractor's Fee		4.35
13. Contingency		8.69
CFC	13.04	0.05
	10101	
Direct Fixed Capital Cost (DFC = TPC+CFC)		
DFC	100	%
Labor consumables etc. not included		

##	WORK PACKAGE	PLANNED TOTAL COSTS (M \$\$\$)										
##	WORK PACKAGE	LOW	MID	HIGH								
1	Building				5.88							
2	Clean rooms: Production	4000 sqm			10.00							
3	Clean rooms: QC + R&D	500 sqm			1.90							
4	Production Utilities/ Side Function	S			3.12							
5	Equipment:				33.68							
6	Production DSP/USP + R&D/D	iagnostic			3.56							
7	Process Machinery + Spares				2.30							
8	Storage				0.63							
9	Engineering	10%			5.73							
10	Qualification	10%			5.73							
11	Unforeseen	20%			3.39							
	TOTAL				80.28							

Economic Evaluation (EER) Cash Flow Analysis (CFR) Itemized Cost (ICR) Production SAP/Excel reports $ERP \rightarrow TOTALY$



Labor, consumables, etc. not included

MEVAC + UVAC + KEMIN INNOVATION

Chain-linked model with independent research, knowledge pool and feedback forward loops

VISION 2022-2026